A Lagrangian dual method for solving variational inequalities
نویسندگان
چکیده
منابع مشابه
A modified subgradient extragradient method for solving monotone variational inequalities
In the setting of Hilbert space, a modified subgradient extragradient method is proposed for solving Lipschitz-continuous and monotone variational inequalities defined on a level set of a convex function. Our iterative process is relaxed and self-adaptive, that is, in each iteration, calculating two metric projections onto some half-spaces containing the domain is involved only and the step siz...
متن کاملA double projection method for solving variational inequalities without monotonicity
Wepresent a double projection algorithm for solving variational inequalities without monotonicity. If the solution of dual variational inequality does exist, then the sequence produced by our method is globally convergent to a solution. Under the same assumption, the sequence produced by known methods has only a subsequence converging to a solution. Numerical experiments are reported.
متن کاملA New Method for Solving Monotone Generalized Variational Inequalities
We suggest new dual algorithms and iterative methods for solving monotone generalized variational inequalities. Instead of working on the primal space, this method performs a dual step on the dual space by using the dual gap function. Under the suitable conditions, we prove the convergence of the proposed algorithms and estimate their complexity to reach an ε-solution. Some preliminary computat...
متن کاملA New Iterative Method for Solving General Mixed Variational Inequalities
The general mixed variational inequality containing a nonlinear term φ is a useful and an important generalization of variational inequalities. The projection method cannot be applied to solve this problem due to the presence of the nonlinear term. To overcome this disadvantage, Abedellah Bnouhachem present a self-adaptive iterative method. In this paper, we present a new self-adaptive method w...
متن کاملA Descent-projection Method for Solving Monotone Structured Variational Inequalities
In this paper, a new descent-projection method with a new search direction for monotone structured variational inequalities is proposed. The method is simple, which needs only projections and some function evaluations, so its computational load is very tiny. Under mild conditions on the problem’s data, the method is proved to converges globally. Some preliminary computational results are also r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2002
ISSN: 1331-4343
DOI: 10.7153/mia-05-60